The ⁷⁷Se High-Resolution NMR in the Single Crystals of Potassium and Rubidium Hydrogen Selenites

I. S. VINOGRADOVA, A. A. SUKHOVSKII, AND F. F. KHIZBULLIN

L. V. Kirensky Institute of Physics Academy of Sciences, USSR Siberian Branch, Krasnoyarsk 660036, USSR

Received April 27, 1988

High-resolution ⁷⁷Se NMR spectra in single crystals of potassium and rubidium hydrogen selenites have been studied using the cross-polarization method. The chemical shift tensors of selenium nuclei are determined from the angular dependences of the position of lines relative to liquid H_2SeO_4 . The parameters of the tensors are typical for the HSeO₃⁻ configuration. The spectra are measured at different temperatures to search for the phase transitions. No phase transitions were found, confirming our previous results. © 1989 Academic Press, Inc.

The ⁷⁷Se high-resolution NMR spectra in single crystals have been studied earlier for the selenious acid and the salts of selenious acid—trihydrogen selenites MH_3 (SeO₃)₂ (1-4). The parameters of the ⁷⁷Se chemical shielding tensor for the pyramidal SeO₃ group were determined from angular dependences of the ⁷⁷Se chemical shifts relative to liquid H₂SeO₄.

Two significantly different ⁷⁷Se chemical shielding tensors were found for every crystal of the trihydrogen selenite family. An attempt was made to assign the experimental tensors to the structure. The structures of the trihydrogen selenites in the ordered phases can be described as being composed of hydrogen-bonded chains of H_2SeO_3 molecules and $HSeO_3^-$ ions. It may be expected that the difference in the hydrogen-bond network around selenium atoms in H_2SeO_3 molecules and $HSeO_3^-$ ions results in different degrees of SeO_3 group distortion and, consequently, in different ⁷⁷Se chemical shielding tensors. The two experimentally determined chemically shielding tensors of the trihydrogen selenite crystals correspond to HSeO₃ and H₂SeO₃ configurations, respectively. It will be a good idea to find the criterion for the assignment of the experimental ⁷⁷Se chemical shift tensors to the specific configurations. In previous papers (1-4) such an assignment was carried out from the analysis of the asymmetry parameters η or shielding anisotropy $\Delta \sigma$.

Studies of ⁷⁷Se NMR spectra in crystals with phase transitions have shown that these experiments can give useful information about the phase transition mechanism (3, 4). In our study of phase transitions in crystals of the hydrogen selenite family *M*HSeO₃ we have used ⁷⁷Se spectra along with ¹H, ²D, and alkali ion NMR spectra.

At present the crystal structures of hydrogen selenites of lithium (5), sodium (6,7), potassium (8), and rubidium (9) have been studied. Their unit cells consist of alkali ions and of pyramidal SeO₃ groups in-

0022-4596/89 \$3.00 Copyright © 1989 by Academic Press, Inc. All rights of reproduction in any form reserved. terlinked by hydrogen bonds. The structural parameters of SeO₃ groups are similar in the crystals of both families ($MHSeO_3$ and $MH_3(SeO_3)_2$) and depend on the proton position in the hydrogen bonds. Thus, a pure Se-O bond is about 1.65 Å in length whereas Se-OH bond is about 1.75 Å. For the disordered case the Se-O bond length is approximately 1.70 Å (10).

There are some typical peculiarities in the structures and properties of the $MHSeO_3$ hydrogen selenites. The first is the existence of hydrogen-bonded centrosymmetric dimers ($HSeO_3^-$)₂. Such dimers are found in the sodium, potassium, and rubidium salts. The only known exception is the LiHSeO₃, whose crystal structure consists of hydrogen-bonded spiral chains of $HSeO_3^-$ ions.

The second peculiarity of hydrogen selenites, in comparison with trihydrogen selenites, is the exclusive presence in the structure of HSeO₃⁻ ions. So, if ⁷⁷Se chemical shift tensors are studied in single crystals of MHSeO₃ with the different alkali ions, these tensors will result from HSeO₃⁻ exclusively. The parameters for the experimental tensors of the HSeO₃⁻ ion may be used to analyze these tensors. This can verify the corrections of the earlier assignment of tensors to the spectra of MH₃(SeO₃)₂.

In the present paper ⁷⁷Se NMR spectra are measured using single crystals of KHSeO₃ and RbHSeO₃. Earlier we studied these crystals by ¹H and ²D NMR (11) and ESR (12) methods. We have found the triclinic symmetry and the isomorphism of both crystals. The parameters of hydrogen bonds also have been determined. Now we set out to find the parameters of the ⁷⁷Se chemical shielding tensor and to carry out a temperature measurement to search a phase transition.

Experimental

Potassium and rubidium hydrogen selenites were prepared by the reaction

$$M_2CO_3 + 2H_2SeO_3 + H_2O = 2MHSeO_3$$

+ 2H_2O + CO_2 \uparrow (*M* = K, Rb)

Single crystals were grown by evaporation from saturated solutions close to room temperature.

The ⁷⁷Se high-resolution NMR spectra were obtained using the cross polarization of ⁷⁷Se nuclei (natural abundance 7.5%) by protons with a Bruker pulse spectrometer operating at 90.02 MHz for ¹H and at 17.187 MHz for ⁷⁷Se. A ¹H rotating radio frequency field of 10 G was employed in the experiments. The linewidths of separate lines in the ⁷⁷Se NMR spectrum were about 100 Hz. To determine the magnetic shielding tensor of 77Se nuclei we chose three mutually orthogonal axes X, Y, Z that were based on the crystal habit and triclinic symmetry of the unit cell (8). The crystals of KHSeO₃ and RbHSeO₃ possess a cleavage plane (the 001 plane). Thus, the Z-axis was chosen perpendicular to this cleavage plane, the X-axis was chosen parallel to the a-axis, and the Y-axis was situated in the (001) plane, perpendicular to the X and Z axes. The crystal habit and the axis system are described in detail in (11).

NMR spectra were taken every 10° to study the angular dependences of the line shifts relative to liquid H₂SeO₄ at the rotation of the single crystal samples about X, Y, and Z. The experimental data were analyzed using the Volkoff method (13).

Results and Discussion

The crystal structures of KHSeO₃ and RbHSeO₃ have been determined by neutron diffraction and X-ray (8, 9) methods. The crystals were found to be isomorphous, as was predicted from NMR and ESR data. They have triclinic unit cells with the centrosymmetric point group PI and the parameters a = 5.003 Å, b = 5.726 Å, c = 6.729 Å for KHSeO₃ and a = 5.231 Å, b = 5.903 Å, c = 7.748 Å for RbHSeO₃.

FIG. 1. The dimers $[HSeO_3]_2$ of KHSeO₃ crystals projected on the (*ac*) plane. Dotted lines indicate hydrogen bonds.

The unit cell of each crystal is found to be very small and contains two formula units. The structure consists of $HSeO_{3}^{-}$ ions form-

ing centrosymmetric dimers $[HSeO_3^-]_2$ (Fig. 1). The HSeO₃⁻ ion is pyramidal, with two shorter Se–O bonds and one longer Se–OH bond. In the crystal KHSeO₃ the Se–O(1) bond length is 1.649 Å, Se–O(2) is 1.674 Å, and Se–O(3) is 1.748 Å. In RbHSeO₃ Se– O(1) is 1.681 Å, Se–O(2) is 1.660 Å, and Se–O(3) is 1.781 Å. Protons are found ordered in hydrogen bonds in a single minimum potential well near O(3) and this extends the Se–O(3) bond length in comparison with the other. Disorder is not observed (8, 11).

With respect to the ⁷⁷Se NMR spectra, we observed only one spectral line in all orientations of the crystals relative to the magnetic field. The angular dependences of the position of the ⁷⁷Se NMR lines in KHSeO₃ and RbHSeO₃ are shown in Fig. 2. They correspond to a triclinic symmetry of both crystals, to their isomorphism, and to

FIG. 2. Angular dependences of the 77 Se chemical shifts relative to liquid H₂SeO₄ in KHSeO₃ and RbHSeO₃ single crystals.

Single crystal	Principal values (ppm) relative to liquid H ₂ SeO ₄	Direction cosines of the principal tensor axes relative to			Isotoproic	Shielding	Asymmetry
		X-axis	Y-axis	Z-axis	σ _{av}	$\Delta \sigma$	η
· · · ·	$\sigma xx = -415$	0.3343	-0.7932	0.5089			
KHSeO ₃	$\sigma yy = -382$	-0.8143	0.0287	0.5797	-293	317	0.15
	$\sigma zz = -81$	0.4744	0.6082	0.6364			
RbHSeO ₃	$\sigma xx = -411$	0.4114	-0.7662	0.4935			
	$\sigma yy = -375$	-0.8118	0.0619	0.5807	-292	303	0.18
	$\sigma zz = -90$	0.4144	0.6396	0.6474			

TABLE I

PARAMETERS OF THE ⁷⁷Se CHEMICAL SHIELDING TENSOR IN THE SINGLE CRYSTALS OF KHSeO₁ and RbHSeO₁

one structurally nonequivalent SeO_3 group in the unit cell of each crystal.

From experimental angular dependences we calculated the parameters of the ⁷⁷Se magnetic shielding tensor: principal values σxx , σyy , σzz , their direction cosines relative to X, Y, Z axes, as well as the values of the isotropic average $\sigma_{av} = \frac{1}{3}(\sigma xx + \sigma yy + \sigma zz)$, the shielding anisotropy $\Delta \sigma = \sigma zz - \frac{1}{2}(\sigma xx + \sigma yy)$, and the asymmetry parameter $\eta = (\sigma yy - \sigma xx)/(\sigma zz - \sigma_{av})$. These parameters are given in Table I.

To analyze these parameters of the tensors it can be noted that all parameters are similar in KHSeO₃ and RbHSeO₃. They are similar also to the parameters of the ⁷⁷Se magnetic shielding tensor in the single crystal NH₄HSeO₃ H₂O (our data) (14). These three tensors correspond to the HSeO₃⁻ configuration.

It is necessary to compare our results with the results obtained in $MH_3(SeO_3)_2$ single crystals which also contain $HSeO_3^$ ions. The experimental results for MH_3 $(SeO_3)_2$ are given in Table II together with data for selenious acid. The results for potassium and cesium salts are for ordered phases.

Single crystals of selenious acid consist of H_2SeO_3 molecules (15), and the experi-

mental ⁷⁷Se magnetic shielding tensor in this crystal is typical for H₂SeO₃. Its characteristic property is a large asymmetry parameter $\eta = 0.45$. In the crystals of KHSeO₃, RbHSeO₃ and NH₄HSeO₃ · H₂O with the HSeO₃⁻ configuration η changes in the range 0.15–0.18. It must be expected that in M_2 SeO₃ crystals with SeO₃²⁻ ions, η will be zero because all three Se–O bonds must be of equal length, but the experiments are necessary.

So, the asymmetry parameter η can be considered as the characteristic parameter for the assignment of the experimental tensor to SeO₁²⁻, HSeO₁, or H₂SeO₁ species.

In the family of trihydrogen selenites only the data for NH₄H₃(SeO₃)₂ satisfied this contention: η for H₂SeO₃ is twice as large as that for HSeO₃⁻. In KH₃(SeO₃)₂ η is about equal for HSeO₃⁻ and H₂SeO₃ as that in CsH₃(SeO₃)₂. Because of this, in these crystals the assignment was taken from the analysis of the shielding anisotropy $\Delta \sigma$. The authors (3, 4) found that $\Delta \sigma$ is always less in HSeO₃⁻ and is changed from 274 to 301 for HSeO₃⁻ and from 390 to 534 for H₂SeO₃ (Table II). But our $\Delta \sigma$ values in *M*HSeO₃ crystals (317 for KHSeO₃, 303 for RbHSeO₃, and 345 for NH₄HSeO₃ H₂O) are between these limits of the change of $\Delta \sigma$ for

⁷⁷Se HIGH-RESOLUTION NMR

Sin	gle crystal	Configuration	Principal values (ppm) relative to liquid H ₂ SeO ₄	Isotropic average $\sigma_{\rm av}$	Shielding anisotropy Δσ	Asymmetry η
H ₂ SeO ₃		H ₂ SeO ₃	$\sigma xx = -450$			
			$\sigma yy = -133$	-261	390	0.45
NH.H.(SeO.).	_	H.SeO.	$\sigma_{ZZ} = -1$ $\sigma_{TT} = -471$			
1114113(5003)2	2	1125003	$\sigma_{XX} = -311$	268	369	0.65
			$\sigma_{ZZ} = -22$	200	507	0.05
		HSeO ₃	$\sigma xx = -369$			
		-	$\sigma yy = -315$	-251	274	0.29
			$\sigma zz = -68$			
$KH_3(SeO_3)_2 T < T_c$ ordered phase		H_2SeO_3	$\sigma xx = -415$			
			$\sigma yy = -359$	-261	373	0.21
			$\sigma zz = -13$			
		$HSeO_3^-$	$\sigma xx = -383$			
			$\sigma yy = -351$	-273	289	0.19
	r - m - 1 - 1 - 1 - 1		$\sigma zz = -81$			
$CsH_3(SeO_3)_2$ $T < T_c$ ordered phase		$H_2SeO_3(1)$	$\sigma xx = -430$	2.42	122	0.20
			$\sigma yy = -343$	-242	433	0.30
		\mathbf{H} SeO (2)	$\sigma_{22} = -47$			
		1123003(2)	$\sigma_{XX} = -353$	-252	534	0.43
			$\sigma_{77} = -104$	252		0.45
		HSeO ₅ (1)	$\sigma xx = -407$			
		112003(1)	$\sigma yy = -307$	-244	338	0.44
			$\sigma zz = -19$			
		$HSeO_{\overline{3}}(2)$	$\sigma xx = -371$			
			$\sigma yy = -340$	-255	301	0.15
			$\sigma zz = -54$			

TABLE II Parameters of the ⁷⁷Se Chemical Shielding Tensor in the Single Crystals of Selenious Acid and Trihydrogen Selenites

 $HSeO_{\overline{3}}$ and H_2SeO_3 in trihydrogen selenites.

To summarize, we assume that η must be the characteristic parameter for the assignment of the experimental ⁷⁷Se magnetic shielding tensors to SeO₃²⁻, HSeO₃⁻, or H₂SeO₃ species. But for the final argument experimental data are necessary from single crystals of *M*HSeO₃ and *M*₂SeO₃ families. For the present the results in the trihydrogen selenites of potassium and caesium remain incomprehensible.

Earlier we attempted to discover a phase transition in KHSeO₃ which is reported in

FIG. 3. Angular dependences of the ⁷⁷Se chemical shifts of KHSeO₃ at room temperature (\bigcirc) and at 108 K (\bigcirc).

FIG. 4. Temperature dependences of the ⁷⁷Se chemical shifts in the single crystals of KHSeO₃ (\bigcirc) and RbHSeO₃ (\bigcirc), H₀ \perp Y, θ = 70°.

(16, 17) but without success (11). In the present paper we continue the search of the phase transition by recording the ⁷⁷Se NMR spectra of KHSeO₃ over a wide temperature range. We have studied the angular dependences of the chemical shifts not only at room temperature, but also at 108 K for the specimen rotated around the Y-axis (Fig. 3). At low temperature the values of the chemical shifts are decreased but the shape of the angular dependence is retained. The temperature change of the chemical shift is permanent as can be seen from Fig. 4. A phase transition was not discovered.

In the crystal of RbHSeO₃ we obtained a similar result: no phase transition was detected. We studied the temperature dependence of the chemical shift from room temperature to 108 K and found no evidence for a phase transition (Fig. 4).

Our results on ⁷⁷Se NMR confirmed earlier results of the absence of the phase transitions in KHSeO₃ and RbHSeO₃ single crystals. Apparently the dimers $[HSeO_3^-]_2$ make rigid structures in MHSeO₃ families.

References

- A. G. LUNDIN, YU. N. MOSKVICH, AND A. A. SUKHOVSKII, Zh. Eksper. Teor. Fiz. Pisma 27, 623 (1978). [in Russian]
- A. I. KRIGER, A. G. LUNDIN, YU. N. MOSKVICH, AND A. A. SUKHOVSKII, *Phys. Status Solidi* (a) 58, K81 (1980).
- 3. A. A. SUKHOVSKII, A. I. KRIGER, YU. N. MOSKVICH, AND A. G. LUNDIN, *Fiz. Tverd. Tela* 22, 914 (1980). [in Russian]
- 4. A. I. KRIGER, YU. N. MOSKVICH, A. A. SUKHOVSKII, AND O. V. FALALEEV, *Phys. Status Solidi* (a) **69**, 455 (1982).
- 5. S. CHOMNILPAN AND R. LIMINGA, Acta Crystallogr. Sect. B 35, 3011 (1979).
- S. CHOMNILPAN, R. LIMINGA, E. J. SONNEVELD, AND I. W. VISSER, Acta Crystallogr. Sect. B 37, 2217 (1981).
- E. E. RIDER, V. A. SARIN, N. N. BYDANOV, AND I. S. VINOGRADOVA, Sov. Phys. Crystallogr. 31, 264 (1986).
- V. A. SARIN, N. N. BYDANOV, I. S. VINOGRA-DOVA, E. E. RIDER, AND S. P. SOLOVJEV, Sov. Phys. Crystallogr. 29, 243 (1984).
- I. I. BANNOVA, I. S. VINOGRADOVA, A. M. KUZ'MIN, I. V. ROZHDESTVENSKAYA, AND O. A. USOV, Sov. Phys. Crystallogr. 32, 83 (1987).
- 10. S. CHOMNILPAN, R. TELLGREN, AND R. LIMINGA, Acta Crystallogr. Sect. B 34, 373 (1978).
- I. S. VINOGRADOVA AND S. I. VASILJEVA, J. Solid State Chem. 62, 138 (1986).
- I. S. VINOGRADOVA, V. P. KOPARNIK, AND YU. N. IVANOV, "Nuclear Magnetic Relaxation and Dynamics of Spin Systems," p. 78, Krasnoyarsk (1982). [in Russian]
- 13. G. M. VOLKOFF, H. E. PETCH, AND D. W. L. SMELLIE, Canad. J. Phys. 30, 270 (1953).
- 14. I. S. VINOGRADOVA AND F. F. KHIZBULLIN, J. Solid State Chem. 73 (1988).
- F. KREBS LARSEN, M. S. LEHMAN, AND I. SOTOFTE, Acta Chem. Scand. 25, 1233 (1971).
- 16. R. PEPINSKY AND K. VEDAM, Phys. Rev. 114, 1217 (1959).
- 17. C. A. CODY, R. C. LEVITT, R. S. VISWANATS, AND P. J. MILLER, J. Solid State Chem. 26, 28 (1978).